Publications by authors named "K Vo-Phuoc"

Mass and angle distributions for the ^{52}Cr+^{198}Pt and ^{54}Cr+^{196}Pt reactions (both forming ^{250}No) were measured and subtracted, giving new information on fast quasifission mass evolution, and the first direct determination of the dependence of sticking times on angular momentum. TDHF calculations showed good agreement with average experimental values, but experimental mass distributions unexpectedly extended to symmetric splits while the peak yield remained close to the initial masses. This implies a strong role of fluctuations in mass division early in the collision, giving insights into the transition from fast energy dissipative deep-inelastic collisions to quasifission.

View Article and Find Full Text PDF

Superheavy elements are formed in fusion reactions which are hindered by fast nonequilibrium processes. To quantify these, mass-angle distributions and cross sections have been measured, at beam energies from below-barrier to 25% above, for the reactions of ^{48}Ca, ^{50}Ti, and ^{54}Cr with ^{208}Pb. Moving from ^{48}Ca to ^{54}Cr leads to a drastic fall in the symmetric fission yield, which is reflected in the measured mass-angle distribution by the presence of competing fast nonequilibrium deep inelastic and quasifission processes.

View Article and Find Full Text PDF

The atomic numbers and the masses of fragments formed in quasifission reactions are simultaneously measured at scission in ^{48}Ti+^{238}U reactions at a laboratory energy of 286 MeV. The atomic numbers are determined from measured characteristic fluorescence x rays, whereas the masses are obtained from the emission angles and times of flight of the two emerging fragments. For the first time, thanks to this full identification of the quasifission fragments on a broad angular range, the important role of the proton shell closure at Z=82 is evidenced by the associated maximum production yield, a maximum predicted by time-dependent Hartree-Fock calculations.

View Article and Find Full Text PDF