Publications by authors named "K Viras"

Cyclodextrins (CDs) are a well-known class of supermolecules that have been widely used to protect drugs against conjugation and metabolic inactivation as well as to enhance the aqueous solubility and hence to ameliorate the oral bioavailability of sparingly soluble drug molecules. The hepatoprotectant drug silibinin can be incorporated into CDs, and here we elucidate the interaction between the drug and the host at the molecular level. The complexation product of silibinin with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) is characterized by Differential Scanning Calorimetry, mass spectrometry, solid and liquid high-resolution NMR spectroscopy.

View Article and Find Full Text PDF

The renin-angiotensin-aldosterone system (RAAS) plays a key role in the regulation of blood pressure. Renin is the rate limiting enzyme of the RAAS and aliskiren is a highly potent and selective inhibitor of the human renin. Renin is known to be active both in the circulating blood stream as well as locally, when bound to the (pro)-renin receptor ((P)RR).

View Article and Find Full Text PDF

Valsartan is a marketed drug with high affinity to the type 1 angiotensin (AT1) receptor. It has been reported that AT1 antagonists may reach the receptor site by diffusion through the plasma membrane. For this reason we have applied a combination of differential scanning calorimetry (DSC), Raman spectroscopy and small and wide angle X-ray scattering (SAXS and WAXS) to investigate the interactions of valsartan with the model membrane of dipalmitoyl-phosphatidylcholine (DPPC).

View Article and Find Full Text PDF

The structural modifications of the amino acid DL-Norvaline have been studied using differential scanning calorimetry (DSC) and Raman spectroscopy. DSC results showed that this amino acid undergoes two solid-solid phase transitions at -116.9 and -76.

View Article and Find Full Text PDF

This work presents a thorough investigation of the interaction of the novel synthetic pyrrolidinone analog MMK3 with the model membrane system of dipalmitoylphosphatidylcholine (DPPC) and the receptor active site. MMK3 has been designed to exert antihypertensive activity by functioning as an antagonist of the angiotensin II receptor of subtype 1 (AT(1)). Its low energy conformers were characterized by 2D rotating-frame Overhauser effect spectroscopy (ROESY) in combination with molecular dynamics (MD) simulations.

View Article and Find Full Text PDF