Publications by authors named "K Veluraja"

Protein-carbohydrate interactions are involved in several cellular and biological functions. Integrating structure and function of carbohydrate-binding proteins with disease-causing mutations help to understand the molecular basis of diseases. Although databases are available for protein-carbohydrate complexes based on structure, binding affinity and function, no specific database for mutations in human carbohydrate-binding proteins is reported in the literature.

View Article and Find Full Text PDF

Protein-carbohydrate interactions play an important role in several biological processes. The mutation of amino acid residues in carbohydrate-binding proteins may alter the binding affinity, affect the functions and lead to diseases. Elucidating the factors influencing the binding affinity change (ΔΔG) of protein-carbohydrate complexes upon mutation is a challenging task.

View Article and Find Full Text PDF

Galectin-1 (Gal-1) is the first member of galectin family, which has a carbohydrate recognition domain, specifically binds towards -galactoside containing oligosaccharides. Owing its association with carbohydrates, Gal-1 is involved in many biological processes such as cell signaling, adhesion and pathological pathways such as metastasis, apoptosis and increased tumour cell survival. The development of β-galactoside based inhibitors would help to control the Gal-1 expression.

View Article and Find Full Text PDF

Objective: The aim of this study is to validate the clinical use of flattening filter-free (FFF) beam-based volumetric-modulated arc therapy (VMAT) in synchronous bilateral breast carcinoma (SBBC) patient treatments and to compare with flattening filtered (FF) beam-based VMAT.

Materials And Methods: Computed tomography images of 15 SBBC patients were taken for this study. A dose of 50 Gy in 25 fractions was prescribed to planning target volume (PTV).

View Article and Find Full Text PDF

Protein-carbohydrate interactions play a major role in several cellular and biological processes. Elucidating the factors influencing the binding affinity of protein-carbohydrate complexes and predicting their free energy of binding provide deep insights for understanding the recognition mechanism. In this work, we have collected the experimental binding affinity data for a set of 389 protein-carbohydrate complexes and derived several structure-based features such as contact potentials, interaction energy, number of binding residues and contacts between different types of atoms.

View Article and Find Full Text PDF