The catalytic performance of phosphate-stabilized WO-ZrO compositions in gas-phase glycerol dehydration has been investigated. Results show that varying WO concentrations direct the process towards either acrolein or allyl alcohol formation. Catalysts with low WO content exhibit strong Lewis acid sites (Zr and W), where these metal ions likely function as redox sites, facilitating glycerol hydrogenolysis to produce allyl alcohol.
View Article and Find Full Text PDF"Core/shell" nanocomposites based on magnetic magnetite (FeO) and redox-active cerium dioxide (CeO) nanoparticles (NPs) are promising in the field of biomedical interests because they can combine the ability of magnetic NPs to heat up in an alternating magnetic field (AMF) with the pronounced antioxidant activity of CeO NPs. Thus, this report is devoted to FeO/CeO nanocomposites (NCPs) synthesized by precipitation of the computed amount of "CeO-shell" on the surface of prefabricated FeO NPs. The X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy data validated the formation of FeO/CeO "core/shell"-like NCPs, in which ultrafine CeO NPs with an average size of approximately 3-3.
View Article and Find Full Text PDFCeramics with nominal chemical composition CaCuTiO (CCTO), CaCuTiAlOF (CCTOAF), and CaMgCuTiAlOF (CCTOMAF) were prepared by the solid-state reactions technique. Using SEM, EDX, XPS, EPR, NMR, and complex impedance spectroscopy, the microstructure, elements distribution, chemical composition of grains and grain boundaries, and the dielectric response of ceramics were investigated. In the ССТО, CCTOAF, and CCTOMAF series, the average grain size increases, the degree of copper segregation at the grain boundaries is inversely related to grain size, and the dielectric loss decreases from 0.
View Article and Find Full Text PDFCerium oxide nanoparticles (CeO NPs) are well known for their application in various fields of industry, as well as in biology and medicine. Knowledge of synthesis schemes, physicochemical and morphological features of nanoscale CeO is important for assessing their antioxidant behavior and understanding the mechanism of oxidative stress and its consequences. The choice of the method of synthesis should be based on the possibility to choose the conditions and parameters for obtaining CeO with controlled dimensions and a ratio of Се/Се on their surface.
View Article and Find Full Text PDFOxygen diffusivity and surface exchange kinetics underpin the ionic, electronic, and catalytic functionalities of complex multivalent oxides. Towards understanding and controlling the kinetics of oxygen transport in emerging technologies, it is highly desirable to reveal the underlying lattice dynamics and ionic activities related to oxygen variation. In this study, the evolution of oxygen content is identified in real-time during the progress of a topotactic phase transition in La Sr MnO epitaxial thin films, both at the surface and throughout the bulk.
View Article and Find Full Text PDF