In proton therapy, range uncertainties prevent optimal benefit from the superior depth-dose characteristics of proton beams over conventional photon-based radiotherapy. To reduce these uncertainties we recently proposed the use of phase-change ultrasound contrast agents as an affordable and effective range verification tool. In particular, superheated nanodroplets can convert into echogenic microbubbles upon proton irradiation, whereby the resulting ultrasound contrast relates to the proton range with high reproducibility.
View Article and Find Full Text PDFRadiotherapy treatment plans have become highly conformal, posing additional constraints on the accuracy of treatment delivery. Here, we explore the use of radiation-sensitive ultrasound contrast agents (superheated phase-change nanodroplets) as dosimetric radiation sensors. In a series of experiments, we irradiated perfluorobutane nanodroplets dispersed in gel phantoms at various temperatures and assessed the radiation-induced nanodroplet vaporization events using offline or online ultrasound imaging.
View Article and Find Full Text PDFBackground: The safety and efficacy of proton therapy is currently hampered by range uncertainties. The combination of ultrasound imaging with injectable radiation-sensitive superheated nanodroplets was recently proposed for in vivo range verification. The proton range can be estimated from the distribution of nanodroplet vaporization events, which is stochastically related to the stopping distribution of protons, as nanodroplets are vaporized by protons reaching their maximal LET at the end of their range.
View Article and Find Full Text PDFScanning laser Doppler vibrometry is a widely adopted method to measure the full-field out-of-plane vibrational response of materials in view of detecting defects or estimating stiffness parameters. Recent technological developments have led to performant 3D scanning laser Doppler vibrometers, which give access to both out-of-plane and in-plane vibrational velocity components. In the present study, the effect of using (i) the in-plane component; (ii) the out-of-plane component; and (iii) both the in-plane and out-of-plane components of the recorded vibration velocity on the inverse determination of the stiffness parameters is studied.
View Article and Find Full Text PDFMethods allowing for in situ dosimetry and range verification are essential in radiotherapy to reduce the safety margins required to account for uncertainties introduced in the entire treatment workflow. This study suggests a non-invasive dosimetry concept for carbon ion radiotherapy based on phase-change ultrasound contrast agents. Injectable nanodroplets made of a metastable perfluorobutane (PFB) liquid core, stabilized with a crosslinked poly(vinylalcohol) shell, are vaporized at physiological temperature when exposed to carbon ion radiation (C-ions), converting them into echogenic microbubbles.
View Article and Find Full Text PDF