Publications by authors named "K Van Emelen"

CXCR4 has been a target of interest in drug discovery for numerous years. However, so far, most if not all studies focused on finding antagonists of CXCR4 function. Recent studies demonstrate that targeting a minor allosteric pocket of CXCR4 induces an immunomodulating effect in immune cells expressing CXCR4, connected to the TLR pathway.

View Article and Find Full Text PDF
Article Synopsis
  • Direct acting antiviral agents are now the leading treatment for hepatitis C virus (HCV) infection, utilizing various inhibitors like protease and polymerase inhibitors.
  • Recent research focused on creating new inhibitors targeting the NS5a protein, which is crucial for HCV replication.
  • A series of compounds were developed through a specialized chemical reaction, resulting in several highly effective triazoles that showed strong anti-HCV activity in laboratory tests.
View Article and Find Full Text PDF

The design and synthesis of novel HIV-1 protease inhibitors (PIs) (1-22), which display high potency against HIV-1 wild-type and multi-PI-resistant HIV-mutant clinical isolates, is described. Lead optimization was initiated from compound 1, a Phe-Phe hydroxyethylene peptidomimetic PI, and was directed towards the discovery of new PIs suitable for a long-acting (LA) injectable drug application. Introducing a heterocyclic 6-methoxy-3-pyridinyl or a 6-(dimethylamino)-3-pyridinyl moiety (R(3)) at the para-position of the P1' benzyl fragment generated compounds with antiviral potency in the low single digit nanomolar range.

View Article and Find Full Text PDF

Optimization of a novel series of macrocyclic indole-based inhibitors of the HCV NS5b polymerase targeting the finger loop domain led to the discovery of lead compounds exhibiting improved potency in cellular assays and superior pharmacokinetic profile. Further lead optimization performed on the most promising unsaturated-bridged subseries provided the clinical candidate 27-cyclohexyl-12,13,16,17-tetrahydro-22-methoxy-11,17-dimethyl-10,10-dioxide-2,19-methano-3,7:4,1-dimetheno-1H,11H-14,10,2,9,11,17-benzoxathiatetraazacyclo docosine-8,18(9H,15H)-dione, TMC647055 (compound 18a). This non-zwitterionic 17-membered ring macrocycle combines nanomolar cellular potency (EC(50) of 82 nM) with minimal associated cell toxicity (CC(50)>20 μM) and promising pharmacokinetic profiles in rats and dogs.

View Article and Find Full Text PDF

Novel conformationaly constrained 1,6- and 2,6-macrocyclic HCV NS5b polymerase inhibitors, in which either the nitrogen or the phenyl ring in the C2 position of the central indole core is tethered to an acylsulfamide acid bioisostere, have been designed and tested for their anti-HCV potency. This transformational route toward non-zwitterionic finger loop-directed inhibitors led to the discovery of derivatives with improved cell potency and pharmacokinetic profile.

View Article and Find Full Text PDF