Publications by authors named "K Vaklinova"

Defect centers in insulators play a critical role in creating important functionalities in materials: prototype qubits, single-photon sources, magnetic field probes, and pressure sensors. These functionalities are highly dependent on their midgap electronic structure and orbital/spin wave function contributions. However, in most cases, these fundamental properties remain unknown or speculative due to the defects being deeply embedded beneath the surface of highly resistive host crystals, thus impeding access through surface probes.

View Article and Find Full Text PDF

Defect centers in wide-band-gap crystals have garnered interest for their potential in applications among optoelectronic and sensor technologies. However, defects embedded in highly insulating crystals, like diamond, silicon carbide, or aluminum oxide, have been notoriously difficult to excite electrically due to their large internal resistance. To address this challenge, we realized a new paradigm of exciting defects in vertical tunneling junctions based on carbon centers in hexagonal boron nitride (hBN).

View Article and Find Full Text PDF

We experimentally demonstrate the creation of defects in monolayer WSe via nanopillar imprinting and helium ion irradiation. Based on the first method, we realize atomically thin vertical tunneling light-emitting diodes based on WSe monolayers hosting quantum emitters at deterministically specified locations. We characterize these emitters by investigating the evolution of their emission spectra in external electric and magnetic fields, as well as by inducing electroluminescence at low temperatures.

View Article and Find Full Text PDF

Excitons (coupled electron-hole pairs) in semiconductors can form collective states that sometimes exhibit spectacular nonlinear properties. Here, we show experimental evidence of a collective state of short-lived excitons in a direct-bandgap, atomically thin MoS semiconductor whose propagation resembles that of a classical liquid as suggested by the nearly uniform photoluminescence through the MoS monolayer regardless of crystallographic defects and geometric constraints. The exciton fluid flows over ultralong distances (at least 60 μm) at a speed of ~1.

View Article and Find Full Text PDF

A key advantage of utilizing van-der-Waals (vdW) materials as defect-hosting platforms for quantum applications is the controllable proximity of the defect to the surface or the substrate allowing for improved light extraction, enhanced coupling with photonic elements, or more sensitive metrology. However, this aspect results in a significant challenge for defect identification and characterization, as the defect's properties depend on the the atomic environment. This study explores how the environment can influence the properties of carbon impurity centers in hexagonal boron nitride (hBN).

View Article and Find Full Text PDF