Polaritons are central to the development of nanophotonics, as they provide mechanisms for manipulating light at the nanoscale. A key advancement has been the demonstration of polariton canalization in which the energy flow is directed along a single direction. An intriguing case is the canalization of ray polaritons, characterized by an enhanced density of optical states.
View Article and Find Full Text PDFLight environment in the Arctic differs widely with the seasons. Studies of relationships between objectively measured circadian phase and amplitude of light exposure and melatonin in community-dwelling Arctic residents are lacking. This investigation combines cross-sectional (n = 24-62) and longitudinal (n = 13-27) data from week-long actigraphy (with light sensor), 24-h salivary melatonin profiles, and proxies of metabolic health.
View Article and Find Full Text PDFRaman spectroscopy is a powerful analytical method widely used in many fields of science and applications. However, one of the inherent issues of this method is a low signal-to-noise ratio for ultrathin and two-dimensional (2D) materials. To overcome this problem, techniques like surface-enhanced Raman spectroscopy (SERS) that rely on nanometer scale metallic particles are commonly employed.
View Article and Find Full Text PDFIn children, therapy-related hematologic neoplasms (t-HN) are uncommon. Many are driven by genetic events independent of clonal hematopoiesis. We sought to understand the clinical and genetic factors of pediatric t-HN in a large independent cohort.
View Article and Find Full Text PDFThe lattice geometry of natural materials and the structural geometry of artificial materials are crucial factors determining their physical properties. Most materials have predetermined geometries that lead to fixed physical characteristics. Here, the demonstration of a carbon nanotube network serves as an example of a system with controllable orientation achieving on-demand optical properties.
View Article and Find Full Text PDF