Resin-immobilized catalysts were prepared through chirality-driven self-assembly. The method allows the resin-immobilized catalyst to be regenerated under mild conditions and catalyst exchange to be carried out quantitatively. The uniqueness of the methodology was demonstrated by the preparation of a catalyst for TEMPO oxidation as well as a two-step sequential TEMPO oxidation/aldol condensation sequence enabled by facile catalyst exchange.
View Article and Find Full Text PDFA strategy to build Janus dendrimers via the chirality-directed self-assembly of heteroleptic Zn(ii) BOX complexes is reported. The method allows quantitative synthesis of Janus dendrimers in situ without the need for purifications. Each dendritic domain of the Janus dendrimers can be recycled upon disassembly at the focal point.
View Article and Find Full Text PDFAims: Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading.
View Article and Find Full Text PDFObjectives: The objective of this study was to characterize the effect of rifampin incorporation into poly(methyl methacrylate) (PMMA) bone cement. While incompatibilities between the two materials have been previously noted, we sought to identify and quantify the cause of rifampin's effects, including alterations in curing properties, mechanical strength, and residual monomer content.
Methods: Four cement groups were prepared using commercial PMMA bone cement: a control; one with 1 g of rifampin; and one each with equimolar amounts of ascorbic acid or hydroquinone relative to the amount of rifampin added.
The addition of phenyllithium to a polycyclic quinone, 9,11,12,21,22,24-hexaphenyltetrabenzo[a,c,n,p]hexacene-10,23-dione (10), followed by SnCl -mediated reduction of the diol intermediate, yielded 9,10,11,12,21,22,23,24-octaphenyltetrabenzo-[a,c,n,p]hexacene (4). Crystallographic analysis of hexacene 4 showed it to possess a longitudinal twist of 184°, which was in good agreement with AM1 calculations. In addition to being the most twisted acene synthesized to this point, compound 4 contains within its substructure the most twisted naphthalene, anthracene, tetracene, and pentacene moieties described.
View Article and Find Full Text PDF