The paramagnetic fraction surviving at the impurity-induced antiferromagnetic phase transition in the spin-Peierls magnet CuGeO3 is found to increase with an external magnetic field. This effect is explained by the competition of the Zeeman interaction and of the exchange interaction of local antiferromagnetic clusters formed on the spin-gap background near impurities.
View Article and Find Full Text PDFBesides being an ancient pigment, BaCuSi2O6 is a quasi-2D magnetic insulator with a gapped spin dimer ground state. The application of strong magnetic fields closes this gap, creating a gas of bosonic spin triplet excitations. The topology of the spin lattice makes BaCuSi2O6 an ideal candidate for studying the Bose-Einstein condensation of triplet excitations as a function of the external magnetic field, which acts as a chemical potential.
View Article and Find Full Text PDFPhys Rev Lett
August 2004
Single crystal inelastic neutron scattering is used to study dynamic spin correlations in the quasi-one-dimensional quantum antiferromagnet BaCu2(Si0.5Ge0.5)2O7, where the exchange constant fluctuates due to a random distribution of Si and Ge atoms.
View Article and Find Full Text PDFThe unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu2Fe2Ge4O13 are studied using bulk methods, neutron diffraction, and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.
View Article and Find Full Text PDFWe have investigated the electron spin resonance (ESR) on single crystals of BaCu2Ge2O7 at temperatures between 300 and 2 K and in a large frequency band, 9.6-134 GHz, in order to test the predictions of a recent theory, proposed by Oshikawa and Affleck (OA) [Phys. Rev.
View Article and Find Full Text PDF