A microbial screening indicated that two fungal strains, Beauveria bassiana DSM 1344=ATCC 7159 and Cunninghamella elegans DSM 1908=ATCC 9245, as well as four bacterial strains belonging to the genus Streptomyces were able to hydroxylate 4,5-dianilinophthalimide (DAPH, CGP52411) to 4-(4'-hydroxyanilino)-5-anilinophthalimide. Cunninghamella elegans DSM 1908 turned out to be the most active biocatalyst and was also able to form the dihydroxy derivative, 4,5-bis(4'-hydroxyanilino)phthalimide. The reaction for the monohydroxylated biotransformation product was carried out on a preparative scale, and the culture conditions for the formation of 4-(4'-hydroxy- anilino)-5-anilinophthalimide with this strain were op-timized.
View Article and Find Full Text PDFOn the basis of previously described X-ray studies of an enzyme/aza-dipeptide complex,8 aza-dipeptide analogues carrying N-(bis-aryl-methyl) substituents on the (hydroxethyl)hydrazine moiety have been designed and synthesized as HIV-1 protease inhibitors. By using either equally (12) or orthogonally (13) protected dipeptide isosteres, symmetrically and asymmetrically acylated aza-dipeptides can be synthesized. This approach led to the discovery of very potent inhibitors with antiviral activities (ED50) in the subnanomolar range.
View Article and Find Full Text PDF