Publications by authors named "K U Wagner"

This study aimed to provide a comprehensive understanding of the acute and subacute safety and phytochemical profile of pomegranate leaves, aligning with the growing interest in sustainable, plant-based therapeutics. The phytochemical composition, the acute and subacute toxicity of a spray-dried hydroethanolic extract from pomegranate leaves (SDE) were investigated using experimental animal models. Utilizing UV-visible spectrophotometry and liquid chromatography-mass spectrometry (LC-MS), a diverse array of tannins and flavonoids, totaling 38 compounds, was identified.

View Article and Find Full Text PDF

Objective: Hypothalamic hamartomas (HHs) are associated with pharmacoresistant epilepsy. Stereotactic radiofrequency thermocoagulation (SRT) shows promise as a disconnecting intervention. Although magnetic resonance imaging (MRI) is typically used to determine the attachment and intervention side, it presents challenges in cases of bilaterally attached HH, where the epileptogenic side is unclear.

View Article and Find Full Text PDF

The diagnosis of bipolar disorder (BD) in young children has been a topic of debate, in part owing to varied interpretation of manic-like symptoms. We examined how expert academic clinicians participating in the pediatric bipolar biobank varied in their interpretation and application of Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria and diagnoses. Study co-investigators reviewed 12 standardized narratives and for each marked a visual analog scale with their confidence in the presence of manic episodes and criteria.

View Article and Find Full Text PDF

The Wilms' tumor suppressor WT1 is essential for the development of the heart, among other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved in cardiac homeostasis and repair.

View Article and Find Full Text PDF

Background: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.

View Article and Find Full Text PDF