Publications by authors named "K U Totsche"

Heavy precipitation, drought, and other hydroclimatic extremes occur more frequently than in the past climate reference period (1961-1990). Given their strong effect on groundwater recharge dynamics, these phenomena increase the vulnerability of groundwater quantity and quality. Over the course of the past decade, we have documented changes in the composition of dissolved organic matter in groundwater.

View Article and Find Full Text PDF

Hypothesis: Host rock weathering and incipient pedogenesis result in the exposition of minerals, e.g., clay minerals in sedimentary limestones.

View Article and Find Full Text PDF

Background: To better understand the influence of habitat on the genetic content of bacteria, with a focus on members of Candidate Phyla Radiation (CPR) bacteria, we studied the effects of transitioning from soil via seepage waters to groundwater on genomic composition of ultra-small Parcubacteria, the dominating CPR class in seepage waters, using genome resolved metagenomics.

Results: Bacterial metagenome-assembled genomes (MAGs), (318 total, 32 of Parcubacteria) were generated from seepage waters and compared directly to groundwater counterparts. The estimated average genome sizes of members of major phyla Proteobacteria, Bacteroidota and Cand.

View Article and Find Full Text PDF

Most studies of groundwater ecosystems target planktonic microbes, which are easily obtained via water samples. In contrast, little is known about the diversity and function of microbes adhering to rock surfaces, particularly to consolidated rocks. To investigate microbial attachment to rock surfaces, we incubated rock chips from fractured aquifers in limestone-mudstone alternations in bioreactors fed with groundwater from two wells representing oxic and anoxic conditions.

View Article and Find Full Text PDF

Background: The terrestrial subsurface is home to a significant proportion of the Earth's microbial biomass. Our understanding about terrestrial subsurface microbiomes is almost exclusively derived from groundwater and porous sediments mainly by using 16S rRNA gene surveys. To obtain more insights about biomass of consolidated rocks and the metabolic status of endolithic microbiomes, we investigated interbedded limestone and mudstone from the vadose zone, fractured aquifers, and deep aquitards.

View Article and Find Full Text PDF