Most scientists agree that subjective tinnitus is the pathological result of an interaction of damage to the peripheral auditory system and central neuroplastic adaptations. Here we investigate such tinnitus related adaptations in the primary auditory cortex (AC) 7 and 13 days after noise trauma induction of tinnitus by quantifying the density of the extracellular matrix (ECM) in the AC of Mongolian gerbils (Meriones unguiculatus). The ECM density has been shown to be relevant for neuroplastic processes and synaptic stability within the cortex.
View Article and Find Full Text PDFBackground: About one sixth of the population of western industrialized nations suffers from chronic, subjective tinnitus, causing socioeconomic treatment and follow-up costs of almost 22 billion euros per year in Germany alone. According to the prevailing view, tinnitus develops as a consequence of a maladaptive neurophysiological process in the brain triggered by hearing loss.
Objectives: The Erlangen model of tinnitus development presented here is intended to propose a comprehensive neurophysiological explanation for the initial occurrence of the phantom sound after hearing loss.
Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience.
View Article and Find Full Text PDFNeurobiol Sleep Circadian Rhythms
May 2023
The human sleep-cycle has been divided into discrete sleep stages that can be recognized in electroencephalographic (EEG) and other bio-signals by trained specialists or machine learning systems. It is however unclear whether these human-defined stages can be re-discovered with unsupervised methods of data analysis, using only a minimal amount of generic pre-processing. Based on EEG data, recorded overnight from sleeping human subjects, we investigate the degree of clustering of the sleep stages using the General Discrimination Value as a quantitative measure of class separability.
View Article and Find Full Text PDFTemporal processing of auditory data plays a crucial role in our proposed model of tinnitus development through stochastic resonance (SR). The model assumes a physiological mechanism optimizing auditory information transmission (as quantified by autocorrelation [AC] analysis) into the brain by adding the optimal amount of neuronal noise to otherwise subthreshold signals. We hypothesize that this takes place at the second synapse of the auditory pathway in the dorsal cochlear nucleus (DCN).
View Article and Find Full Text PDF