Publications by authors named "K TuzlaKoglu"

Several therapeutic approaches have been developed to promote bone regeneration, including guided bone regeneration (GBR), where barrier membranes play a crucial role in segregating soft tissue and facilitating bone growth. This study emphasizes the importance of considering specific tissue requirements in the design of materials for tissue regeneration, with a focus on the development of a double-layered membrane to mimic both soft and hard tissues within the context of GBR. The hard tissue-facing layer comprises collagen and zinc-doped bioactive glass to support bone tissue regeneration, while the soft tissue-facing layer combines collagen and chitosan.

View Article and Find Full Text PDF

Synthetic polymers remain to be a major choice for scaffold fabrication due to their structural stability and mechanical strength. However, the lack of functional moieties limits their application for cell-based therapies which necessitate modification and functionalization. Blending synthetic polymers with natural components is a simple and effective way to achieve the desired biological properties for a scaffold.

View Article and Find Full Text PDF

Spinal cord injury is a devastating condition of the central nervous system, in which traditional treatments are largely ineffective due to the complex nature of the injured tissue. Therefore, biomaterial-based systems have been developed as possible alternative strategies to repair the damaged tissue. In the present study, we aimed to design bioactive agent loaded scaffolds composed of two layers with distinct physical properties to improve tissue regeneration.

View Article and Find Full Text PDF

Dual meshes are often preferred in the treatment of umbilical and incisional hernias where the abdominal wall defect is large. These meshes are generally composed of either two nonabsorbable layers or a nonabsorbable layer combined with an absorbable one that degrades within the body upon healing of the defect. The most crucial point in the design of a dual mesh is to produce the respective layers based on the structure and requirements of the recipient site.

View Article and Find Full Text PDF
Article Synopsis
  • Biodegradable composite membranes were made from PCL/PLLA blends using a cost-effective solvent casting method, incorporating propolis to enhance their properties.
  • The addition of propolis led to honeycomb-like surface structures, improved flexibility, and lowered melting points, which may facilitate application and degradation.
  • The new composite films demonstrated strong antibacterial activity, suggesting their potential use as alternative barrier membranes in guided tissue regeneration.
View Article and Find Full Text PDF