Publications by authors named "K Traxel"

Composite material development via laser-based additive manufacturing offers many exciting advantages to manufacturers; however, a significant challenge exists in our understanding of process-property relationships for these novel materials. Herein we investigate the effect of input processing parameters towards designing an oxidation-resistant titanium matrix composite. By adjusting the linear input energy density, a composite feedstock of titanium-boron carbide-boron nitride (5 wt% overall reinforcement) resulted in a highly reinforced microstructure composed of borides and carbides and nitrides, with variable properties depending on the overall input energy.

View Article and Find Full Text PDF

Emulating the unique combination of structural, compositional, and functional gradation in natural materials is exceptionally challenging. Many natural structures have proved too complex or expensive to imitate using traditional processing techniques despite recent advances. Recent innovations within the field of additive manufacturing (AM) or 3D Printing (3DP) have shown the ability to create structures that have variations in material composition, structure, and performance, providing a new design-for-manufacturing platform for the imitation of natural materials.

View Article and Find Full Text PDF

Recent advances in the processing of wear-resistant calcium-phosphate reinforced CoCrMo composites for articulating surface applications has necessitated further investigation of performance in biological conditions relevant to patient applications. To this end, CoCrMo composites containing calcium phosphate in the form of hydroxyapatite (HA) were manufactured to study the influence of the reinforcing phase on the tribofilm formation in biologically-relevant conditions. The CoCrMo-HA composites were processed using a laser engineered net shaping (LENS™) additive manufacturing (AM) system with three distinctive compositions: CoCrMo-0%HA, CoCrMo-1%HA, and CoCrMo-3%HA.

View Article and Find Full Text PDF
Article Synopsis
  • Engineered micro- and macro-structures created through 3D printing allow for variable mechanical properties that traditional manufacturing can't achieve.
  • Utilizing selective laser melting, we fabricated different lattice structures of Ti6Al4V using unique designs based on natural crystal configurations.
  • The results showed significant differences in compressive strength and elastic modulus, demonstrating how design variations in lattice structure can significantly influence mechanical performance.
View Article and Find Full Text PDF

Production-volume and cost requirements currently limit machine tool manufacturers' ability to produce application-specific tooling with traditional methods, motivating the development of innovative manufacturing technologies. To this end, we detail a manufacturing framework for the design and production of application-specific cutting tools based on industry standard tungsten carbide-cobalt (WC-Co)-based "carbide" cutting materials using additive manufacturing (AM). Herein, novel diamond-reinforced carbide structures were designed and manufactured via AM and subsequently tested in comparison to current commercial products that are traditionally-processed.

View Article and Find Full Text PDF