Sulforaphane (SFN), an isothiocyanate found in plants of the Brassicaceae family, possesses antioxidant, apoptosis-inducing, and radiosensitizing effects. As one of the mechanisms of cytotoxicity by SFN, SFN has been suggested to be involved in the induction of DNA damage and inhibition of DNA repair. Recently, we reported on the potency of SFN in inducing single-ended double-strand breaks (DSBs) that are caused by the collision of replication forks with single-strand breaks (SSBs).
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Pentosidine (PEN), an advanced glycation end product (AGE), is associated with various age-related diseases and schizophrenia. This study aimed to identify the natural compounds that inhibit PEN synthesis from glucuronic acid using an in vitro system. A screening of 93 natural compounds revealed 47 that reduced PEN synthesis by > 50 %, with eight inhibiting it by > 80 %.
View Article and Find Full Text PDFDJ-1, a causative gene for hereditary recessive Parkinsonism, is evolutionarily conserved across eukaryotes and prokaryotes. Structural analyses of DJ-1 and its homologs suggested the 106th Cys is a nucleophilic cysteine functioning as the catalytic center of hydratase or hydrolase activity. Indeed, DJ-1 and its homologs can convert highly electrophilic α-oxoaldehydes such as methylglyoxal into α-hydroxy acids as hydratase in vitro, and oxidation-dependent ester hydrolase (esterase) activity has also been reported for DJ-1.
View Article and Find Full Text PDF