Publications by authors named "K Thalassinos"

Chemical cross-linking/mass spectrometry (XL-MS) has emerged as a complementary tool for mapping interaction sites within protein networks as well as gaining moderate-resolution native structural insight with minimal interference. XL-MS technology mostly relies on chemoselective reactions (cross-linking) between protein residues and a linker. DSSO represents a versatile cross-linker for protein structure investigation and in-cell XL-MS.

View Article and Find Full Text PDF

Genetic deletion and pharmacological inhibition are distinct approaches to unravelling pain mechanisms, identifying targets and developing new analgesics. Both approaches have been applied to the voltage-gated sodium channels Na1.7 and Na1.

View Article and Find Full Text PDF

Increased activity of the heat shock factor, HSF-1, suppresses proteotoxicity and enhances longevity. However, the precise mechanisms by which HSF-1 promotes lifespan are unclear. Using an RNAi screen, we identify ubiquilin-1 (ubql-1) as an essential mediator of lifespan extension in worms overexpressing hsf-1.

View Article and Find Full Text PDF

Native top-down mass spectrometry is a powerful approach for characterizing proteoforms and has recently been applied to provide similarly powerful insights into protein conformation. Current approaches, however, are limited such that structural insights can only be obtained for the entire conformational landscape in bulk or without any direct conformational measurement. We report a new ion-mobility-enabled method for performing native top-down MS in a conformation-specific manner.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers identified and studied a long non-coding RNA (lncRNA) called aal1 in fission yeast, which is linked to aging, particularly in quiescent (non-dividing) cells.
  • Deleting aal1 shortens the lifespan of these cells, while overexpressing it extends their lifespan, indicating its significant role in regulating cellular longevity.
  • Aal1 influences ribosomal protein levels and protein translation by binding to specific mRNA, reducing ribosomal content, and seems to have similar lifespan-extending effects in Drosophila, suggesting a potential universal mechanism in aging across species.
View Article and Find Full Text PDF