Multiple sclerosis (MS) is an inflammatory, demyelinating disease with an unknown origin. Previous studies showed the involvement of the hypothalamic-pituitary-adrenal (HPA) axis to susceptibility to autoimmune diseases, including MS, and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). During MS/EAE, innate immune cells are activated and release cytokines and other inflammatory mediators, leading to a vicious cycle of inflammation.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an autoimmune disease that usually occurs during the reproductive years in both sexes. Many male patients with MS show lower blood testosterone levels, which was also observed in male rats during experimental autoimmune encephalomyelitis (EAE), an animal model of MS. To better understand the causes of decreased testosterone production during EAE, we investigated the expression status of genes and proteins associated with steroidogenesis in the testes.
View Article and Find Full Text PDFMultiple sclerosis develops during reproductive years in a sex-specific manner. Various neuroendocrine changes have been described in this inflammatory, demyelinating, and debilitating disease. We here aimed to determine the extent and sex specificity of alterations in the hypothalamic-pituitary-gonadal axis in the rat model of multiple sclerosis named experimental autoimmune encephalomyelitis.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic, inflammatory, neurodegenerative disease with an autoimmune component. It was suggested that potassium channels, which are involved in crucial biological functions may have a role in different diseases, including MS and its animal model, experimental autoimmune encephalomyelitis (EAE). It was shown that voltage-gated potassium channels Kv1.
View Article and Find Full Text PDFKv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS.
View Article and Find Full Text PDF