Assays using lysate reagents prepared from horseshoe crab hemocyte extract (limulus amoebocyte lysate, LAL) are commonly and widely used to detect and measure endotoxin in parenteral drugs and medical devices. However, lysate reagents suffer from lot-to-lot variations leading to possible fluctuations in testing. Also, this continued usage of lysate reagents leads to the possible decline of the horseshoe crab population.
View Article and Find Full Text PDFBackground: Type 2 innate lymphoid cells (ILC2s) are one of the sources of IL-5 and IL-13 in allergic airway inflammation. Innate immune receptors such as Toll-like receptors (TLRs) expressed on epithelial cells could contribute to ILC2 activation through IL-33 production, but a direct effect of TLRs on ILC2s remains to be elucidated.
Objectives: We hypothesized that TLRs can directly activate lung ILC2s and participate in the pathogenesis of asthma.
Immunol Cell Biol
November 2018
The signal transducer and activator of transcription 1 (STAT1), a pivotal transcription factor in Janus kinase (JAK)-STAT signaling, regulates the expression of a wide range of immune-related genes, including interferon (IFN) regulatory factor 1 (IRF1). In this study, we found that IRF1 could induce STAT1 phosphorylation and in turn STAT1 activation. When IRF1 was transiently expressed in HEK293 cells, STAT1 phosphorylated at Y701, dimerized and bound to an oligonucleotide containing a gamma-activated sequence (GAS) derived from the IRF1 promoter.
View Article and Find Full Text PDFHouse dust mites (HDMs) are a common source of allergens that trigger both allergen-specific and innate immune responses in humans. Here, we examined the effect of allergen concentration and the involvement of Toll-like receptor 4 (TLR4) in the process of sensitization to house dust mite allergens in an HDM extract-induced asthma mouse model. Intranasal administration of HDM extract induced an immunoglobulin E response and eosinophilic inflammation in a dose-dependent manner from 2.
View Article and Find Full Text PDFWe found that AKT1, a primary effector molecule of PI3K-AKT signaling, distinctively suppressed Toll-like receptor (TLR)-mediated MyD88-dependent and Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF)-dependent signaling by inhibiting NF-κB activation and IRF3 activity independently of its kinase activity. In AKT1 knockout RAW264.7 cells, lipopolysaccharide (LPS)-induced transcription and protein production of cytokines including IL-1β and TNF-α (regulated by the MyD88-dependent pathway), as well as IFN-β and RANTES (C-C motif chemokine ligand 5: CCL-5; regulated by the TRIF-dependent pathways) was enhanced compared to wild type cells.
View Article and Find Full Text PDF