Thiobacillus denitrificans has been shown to be an effective biocatalyst for the treatment of a variety of sulfide-laden waste streams including sour water, sour gases, and refinery spent-sulfidic caustics. The term 'sour' originated in the petroleum industry to describe a waste contaminated with hydrogen sulfide or salts of sulfide and bisulfide. The microbial treatment of sour waste streams resulting from the production or refining of natural gas and crude oil have been investigated in this laboratory for many years.
View Article and Find Full Text PDFCondensate liquids have been found to contaminate soil and ground water at two gas production sites in the Denver Basin operated by Amoco Production Co. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate end point to support a no-intervention decision. Ground water monitoring, soil gas analysis, and analysis of soil cores suggest that bioremediation is occurring at these sites by multiple pathways, including aerobic oxidation, sulfate reduction, and methanogenesis.
View Article and Find Full Text PDFGas condensate liquids contaminate soil and ground water at two gas production sites in the Denver Basin, CO. A detailed field study was carried out at these sites to determine the applicability of intrinsic bioremediation as a remediation option. Ground water monitoring at the field sites and analysis of soil cores suggested that intrinsic bioremediation is occurring at the sites by multiple pathways, including aerobic oxidation, sulfate reduction, and possibly reduction Fe(III) reduction.
View Article and Find Full Text PDFAppl Biochem Biotechnol
August 1996
Condensate liquids have been found to contaminate soil and groundwater at two gas production sites in the Denver Basin operated by Amoco Production Co. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate end point to support a no-intervention decision. Groundwater monitoring and analysis of soil cores suggest that intrinsic bioremediation is occurring at these sites by multiple pathways, including aerobic oxidation, Fe(III) reduction, and sulfate reduction.
View Article and Find Full Text PDF