Front Cell Infect Microbiol
April 2024
In this study, we characterized a strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in . The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections.
View Article and Find Full Text PDFBackground: Klebsiella pneumoniae, which is frequently associated with hospital- and community-acquired infections, contains multidrug-resistant (MDR), hypervirulent (hv), non-MDR/non-hv as well as convergent representatives. It is known that mostly international high-risk clonal lineages including sequence types (ST) 11, 147, 258, and 307 drive their global spread. ST395, which was first reported in the context of a carbapenemase-associated outbreak in France in 2010, is a less well-characterized, yet emerging clonal lineage.
View Article and Find Full Text PDFis a common member of the intestinal flora of vertebrates. In addition to opportunistic representatives, hypervirulent (hvKp) and antibiotic-resistant (ABR-Kp) occur. While ABR-Kp isolates often cause difficult-to-treat diseases due to limited therapeutic options, hvKp is a pathotype that can infect healthy individuals often leading to recurrent infection.
View Article and Find Full Text PDFCritically ill COVID-19 patients are at high risk for venous thromboembolism (VTE), namely deep vein thrombosis (DVT) and/or pulmonary embolism (PE), and death. The optimal anticoagulation strategy in critically ill patients with COVID-19 remains unknown. This study investigated the ante mortem incidence as well as postmortem prevalence of VTE, the factors predictive of VTE, and the impact of changed anticoagulation practice on patient survival.
View Article and Find Full Text PDFPollen grains transport the sperm cells through the style tissue via a fast-growing pollen tube to the ovaries where fertilization takes place. Pollen tube growth requires a precisely regulated network of cellular as well as molecular events including the activity of the plasma membrane H+ ATPase, which is known to be regulated by reversible protein phosphorylation and subsequent binding of 14-3-3 isoforms. Immunodetection of the phosphorylated penultimate threonine residue of the pollen plasma membrane H+ ATPase (LilHA1) of Lilium longiflorum pollen revealed a sudden increase in phosphorylation with the start of pollen tube growth.
View Article and Find Full Text PDF