Publications by authors named "K Suefuji"

MurQ is an N-acetylmuramic acid-phosphate (MurNAc-P) etherase that converts MurNAc-P to N-acetylglucosamine-phosphate and is essential for growth on MurNAc as the sole source of carbon (T. Jaegar, M. Arsic, and C.

View Article and Find Full Text PDF

Escherichia coli breaks down over 60% of the murein of its side wall and reuses the component amino acids to synthesize about 25% of the cell wall for the next generation. The amino sugars of the murein are also efficiently recycled. Here we show that the 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) is returned to the biosynthetic pathway by conversion to N-acetylglucosamine-phosphate (GlcNAc-P).

View Article and Find Full Text PDF

Accurate positioning of the division septum at the equator of Escherichia coli cells requires a rapid oscillation of MinD ATPase between the polar halves of the cell membrane, together with the division inhibitor MinC, under MinE control. The mechanism underlying MinD oscillation remains poorly understood. Here, we demonstrate that purified MinD assembles into protein filaments in the presence of ATP.

View Article and Find Full Text PDF

Aqualysin I has at least two Ca2+-binding sites that have different affinities for Ca2+. The binding of various metal ions to aqualysin I was studied using 23Na- and 139La-NMR spectrometry. Evidence is presented that Ca2+, La3+, and Na+ bind to the low-affinity Ca2+-binding site of aqualysin I, but Mg2+ does not.

View Article and Find Full Text PDF

Aqualysin I, a thermostable homologue of subtilisin, requires its propeptide (ProA) to function as an intramolecular chaperone (IMC). To decipher the mechanisms through which propeptides can initiate protein folding, we characterized ProA in terms of its sequence, structure and function. Our results show that, in contrast to ProS (propeptide of subtilisin), ProA can fold spontaneously, reversibly and cooperatively into a stable monomeric alpha-beta conformation, even when isolated from its cognate protease-domain.

View Article and Find Full Text PDF