We recently reported a novel, heterozygous, and non-synonymous ACTC1 mutation (p.Gly247Asp or G247D) in a large, multi-generational family, causing atrial-septal defect followed by late-onset dilated cardiomyopathy (DCM). We also found that the G247D ACTC1 mutation negatively regulated serum response (SRF)-signaling thereby contributing to the late-onset DCM observed in human patients carrying this mutation ("A cardiac α-actin (ACTC1) p.
View Article and Find Full Text PDFWe recently identified a novel, heterozygous, and non-synonymous ACTC1 mutation (p.Gly247Asp or G247D) in a large, multi-generational family, causing atrial-septal defect followed by late-onset dilated cardiomyopathy (DCM). Molecular dynamics studies revealed possible actin polymerization defects as G247D mutation resides at the juncture of side-chain interaction, which was indeed confirmed by in vitro actin polymerization assays.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
April 2017
The present study focuses on the identification of the gene expression profile of neonatal rat cardiomyocytes (NRVCMs) after dynamic mechanical stretch through microarrays of RNA isolated from cells stretched for 2, 6 or 24h. In this analysis, myeloid leukemia factor-1 (MLF1) was found to be significantly downregulated during the course of stretch. We found that MLF1 is highly expressed in the heart, however, its cardiac function is unknown yet.
View Article and Find Full Text PDFThe intercalated disc (ID) is a "hot spot" for heart disease, as several ID proteins have been found mutated in cardiomyopathy. Myozap is a recent addition to the list of ID proteins and has been implicated in serum-response factor signaling. To elucidate the cardiac consequences of targeted deletion of myozap in vivo, we generated myozap-null mutant (Mzp(-/-)) mice.
View Article and Find Full Text PDFThe intercalated disc (ID) is a major component of the cell-cell contact structures of cardiomyocytes and has been recognized as a hot spot for cardiomyopathy. We have previously identified Myozap as a novel cardiac-enriched ID protein, which interacts with several other ID proteins and is involved in RhoA/SRF signaling in vitro. To now study its potential role in vivo we generated a mouse model with cardiac overexpression of Myozap.
View Article and Find Full Text PDF