Background Introduction: Vestibular schwannoma (VS) tumors typically present with sensorineural hearing loss (SNHL). Losartan has recently demonstrated prevention of tumor-associated SNHL in a mouse model of VS through suppression of inflammatory and pro-fibrotic factors, and the current study investigates this association in humans.
Methods: This is a retrospective study of patients with unilateral VS and hypertension followed with sequential audiometry at a tertiary referral hospital from January 1994 to June 2023.
Background: -related schwannomatosis ( -SWN) is a debilitating condition that calls for robust treatment options. The defining feature of -SWN is the presence of bilateral vestibular schwannomas (VSs), which grow over time and can result in irreversible sensorineural hearing loss, significantly affecting the quality of life for those affected. At present, there are no FDA-approved medications specifically for treating VS or related hearing loss.
View Article and Find Full Text PDFThis report synthesizes the American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS) Task Force's guidance on the integration of artificial intelligence (AI) in otolaryngology-head and neck surgery (OHNS). A comprehensive literature review was conducted, focusing on the applications, benefits, and challenges of AI in OHNS, alongside ethical, legal, and social implications. The Task Force, formulated by otolaryngologist experts in AI, used an iterative approach, adapted from the Delphi method, to prioritize topics for inclusion and to reach a consensus on guiding principles.
View Article and Find Full Text PDFThe inner ear organs responsible for hearing (cochlea) and balance (vestibular system) are susceptible to oxidative stress due to the high metabolic demands of their sensorineural cells. Oxidative stress-induced damage to these cells can cause hearing loss or vestibular dysfunction, yet the precise mechanisms remain unclear due to the limitations of animal models and challenges of obtaining living human inner ear tissue. Therefore, we developed an in vitro oxidative stress model of the pre-natal human inner ear using otic progenitor cells (OPCs) derived from human-induced pluripotent stem cells (hiPSCs).
View Article and Find Full Text PDFSensorineural hearing loss (SNHL) is caused by damage to the mechanosensory hair cells and auditory neurons of the cochlea. The development of imaging tools that can directly visualize or provide functional information about a patient's cochlear cells is critical to identify the pathobiological defect and determine the cells' receptiveness to emerging SNHL treatments. However, the cochlea's small size, embedded location within dense bone, and sensitivity to perturbation have historically precluded high-resolution clinical imaging.
View Article and Find Full Text PDF