Background: Peripheral vascular resistance has a major impact on arterial blood pressure levels. Endothelial C-type natriuretic peptide (CNP) participates in the local regulation of vascular tone, but the target cells remain controversial. The cGMP-producing guanylyl cyclase-B (GC-B) receptor for CNP is expressed in vascular smooth muscle cells (SMCs).
View Article and Find Full Text PDFBackground: Anti-thymocyte globulins are polyclonal T-cell-depleting immunoglobulins used in induction of immunosuppression in kidney transplant recipients. Thymoglobulin is purified rabbit immunoglobulin (Ig)G, obtained by immunization of rabbits with fetal human thymus, which depletes T lymphocytes by complement-dependent lysis and apoptosis, reduces production of cytokines, and decreases expression of adhesion molecules in endothelial cells.
Methods: To determine possible direct effects of Thymoglobulin on kidney cells during transplantation, we used the Human Embryonic Kidney cell line (HEK293) in culture.
Occlusion of cerebral arteries leads to ischemic stroke accompanied by subsequent brain edema. Bradykinin (BK) is involved in the formation of cerebral edema, and natriuretic peptides (NPs) potentially have beneficial effects on brain edema formation via a still unknown mechanism. The aim of this study was clarifying the mechanisms of action of NPs on BK signaling, and their interactive effects after ischemic brain injury.
View Article and Find Full Text PDFRationale: In patients after acute myocardial infarction (AMI), the initial extent of necrosis and inflammation determine clinical outcome. One early event in AMI is the increased cardiac expression of atrial natriuretic peptide (NP) and B-type NP, with their plasma levels correlating with severity of ischemia. It was shown that NPs, via their cGMP-forming guanylyl cyclase-A (GC-A) receptor and cGMP-dependent kinase I (cGKI), strengthen systemic endothelial barrier properties in acute inflammation.
View Article and Find Full Text PDFStroke is the third leading cause of death in the Western world. Ischemic stroke is characterized by a rapid loss of brain function due to disturbance in the blood supply to a part of the brain. Due to fixed intracranial space, any increase in intracranial fluid volume, or progressive brain edema formation, contributes to further deterioration of the already impaired brain function.
View Article and Find Full Text PDF