Publications by authors named "K Soulantica"

The interaction between metal particles and the oxide support, the so-called metal-support interaction, plays a critical role in the performance of heterogenous catalysts. Probing the dynamic evolution of these interactions under reactive gas atmospheres is crucial to comprehending the structure-performance relationship and eventually designing new catalysts with enhanced properties. Cobalt supported on TiO (Co/TiO) is an industrially relevant catalyst applied in Fischer-Tropsch synthesis.

View Article and Find Full Text PDF
Article Synopsis
  • 2D ultrathin metal nanostructures, specifically nanosheets of face-centered cubic (fcc) metals like platinum, have unique properties and advantages for catalysis due to their high surface-to-volume ratios and low-coordinated sites.
  • The selective synthesis of platinum nanosheets is achieved through a seeded-growth method, focusing on preserving defects in the precursor seeds to promote effective 2D growth.
  • Testing the catalytic performance of these platinum nanosheets in phenylacetylene hydrogenation reveals that they outperform traditional commercial Pt/C catalysts in terms of stability and selectivity to styrene.
View Article and Find Full Text PDF

Magnetic nanoparticles (NPs) are attractive both for their fundamental properties and for their potential in a variety of applications ranging from nanomedicine and biology to micro/nanoelectronics and catalysis. While these fields are dominated by the use of iron oxides, reduced metal NPs are of interest since they display high magnetization and adjustable anisotropy according to their size, shape and composition. The use of organometallic precursors makes it possible to adjust the size, shape (sphere, cube, rod, wire, urchin, …) and composition (alloys, core-shell, composition gradient, dumbbell, …) of the resulting NPs and hence their magnetic properties.

View Article and Find Full Text PDF

Magnetic heating, namely, the use of heat released by magnetic nanoparticles (MNPs) excited with a high-frequency magnetic field, has so far been mainly used for biological applications. More recently, it has been shown that this heat can be used to catalyze chemical reactions, some of them occurring at temperatures up to 700 °C. The full exploitation of MNP heating properties requires the knowledge of the temperature dependence of their heating power up to high temperatures.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed single crystalline FeCo nanostars using a straightforward organometallic method, which allowed for direct synthesis without needing a complicated seed-mediated growth process.* -
  • The nanostars are made up of 8 tetrahedrons and showcase high magnetization levels similar to bulk materials, measured at 235 A·m·kg.* -
  • Advanced imaging techniques revealed complex 3D spin configurations influenced by both dipolar and exchange interactions, highlighting how the unique shape of these nanostars can significantly alter their magnetic properties.*
View Article and Find Full Text PDF