The kidneys play an important role in the regulation of phosphate and calcium balance and serum concentrations, coordinated by fibroblast growth factor 23 (FGF23), parathyroid hormone (PTH), and 1,25-dihydroxyvitamin D (1,25D). In patients with chronic kidney disease (CKD), this regulation is impaired, leading to CKD-mineral and bone disorder (CKD-MBD), characterized by decreased 1,25D, elevated FGF23, secondary hyperparathyroidism, hyperphosphatemia, bone abnormalities, and vascular and soft-tissue calcification. While bone abnormalities associated with CKD-MBD, known as renal osteodystrophy, have been recognized as the most typical interaction between the kidney and bone, a number of other kidney-bone interactions have been identified, for which our knowledge of the pathogenesis of CKD-MBD has played an important role.
View Article and Find Full Text PDFBackground: Hyponatremia is implicated in pathological bone resorption and has been identified as a risk factor for bone fracture in the general population. However, there are limited data on the association between serum sodium levels and fracture risk in patients undergoing hemodialysis (HD).
Methods: We analyzed a historical cohort of 2220 maintenance HD patients to examine the association between serum sodium levels and the risk of fracture and mortality.
Diabetes is known to increase the risk of nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Here we treat male STAM (STelic Animal Model) mice, which develop diabetes, NASH and HCC associated with dysbiosis upon low-dose streptozotocin and high-fat diet (HFD), with insulin or phlorizin. Although both treatments ameliorate hyperglycemia and NASH, insulin treatment alone lead to suppression of HCC accompanied by improvement of dysbiosis and restoration of antimicrobial peptide production.
View Article and Find Full Text PDF