High-fat diet (HFD)-induced obesity is a global health concern associated with gastrointestinal disorders. While mammalian models have elucidated the effects of a HFD on intestinal structure and function, its impact on zebrafish, a crucial model for studying diet-induced obesity and gastrointestinal dysfunction, remains inadequately characterized. This study investigated the influence of a HFD on zebrafish intestinal morphology, tight junction (TJ) protein expression, and inflammatory markers.
View Article and Find Full Text PDFGiven the comprehensive examination of the role of fatty acid-rich diets in central nervous system development in children, this study bridges significant gaps in the understanding of dietary effects on neurodevelopment. It delves into the essential functions of fatty acids in neurodevelopment, including their contributions to neuronal membrane formation, neuroinflammatory modulation, neurogenesis, and synaptic plasticity. Despite the acknowledged importance of these nutrients, this review reveals a lack of comprehensive synthesis in current research, particularly regarding the broader spectrum of fatty acids and their optimal levels throughout childhood.
View Article and Find Full Text PDFObesity is a complex chronic condition associated with multiple health risks, including visceral obesity, which is particularly detrimental. To gain insight into the mechanisms underlying obesity and its associated pathologies, a novel zebrafish model was established using an innovative high-fat diet (HFD). The primary goal was to induce visceral obesity in zebrafish and study the associated structural changes.
View Article and Find Full Text PDFEmodin-8--glucoside (E-8--G) is a glycosylated derivative of emodin that exhibits numerous biological activities, including immunomodulatory, anti-inflammatory, antioxidant, hepatoprotective, or anticancer activities. However, there are no reports on the activity of E-8--G against cancers of the nervous system. Therefore, the aim of the study was to investigate the antiproliferative and cytotoxic effect of E-8--G in the SK-N-AS neuroblastoma, T98G human glioblastoma, and C6 mouse glioblastoma cancer cells.
View Article and Find Full Text PDFGliomas develop and grow in the brain and central nervous system. Examining glioma grading processes is valuable for improving therapeutic challenges. One of the most extensive repositories storing transcriptomics data for gliomas is The Cancer Genome Atlas (TCGA).
View Article and Find Full Text PDF