Background: MicroRNAs, a class of small noncoding RNAs, serve as post-transcriptional regulators of gene expression and are present in a stable and quantifiable form in biological fluids. MicroRNAs may influence intra-articular responses and the course of disease, but very little is known about their temporal changes in osteoarthritis.
Objectives: To identify miRNAs and characterise the temporal changes in their abundance in SF from horses with experimentally induced osteoarthritis.
Introduction: Influenza A virus (IAV) infection is a global respiratory disease, which annually leads to 3-5 million cases of severe illness, resulting in 290,000-650,000 deaths. Additionally, during the past century, four global IAV pandemics have claimed millions of human lives. The epithelial lining of the trachea plays a vital role during IAV infection, both as point of viral entry and replication as well as in the antiviral immune response.
View Article and Find Full Text PDFIntroduction: Birth asphyxia may negatively affect gut function and immunity in newborns. Conversely, immunomodulatory milk diets may protect the gut and immune system against damage caused by asphyxia. Using caesarean-derived pigs as models, we hypothesised that enteral feeding with plasma improves gut and immune functions in asphyxiated newborns.
View Article and Find Full Text PDFAs an alternative to traditional serological markers, that is, antibodies, for serum-based specific diagnosis of infections, circulating non-antibody markers may be used to monitor active disease. Acute phase proteins (APPs) are a prominent class of such markers widely used for diagnosing ongoing inflammation and infection. In this chapter, basic theoretical and practical considerations on developing APP assays and using APPs as markers of ongoing infection are presented with a specific focus on intracellular infections in pigs.
View Article and Find Full Text PDFGlycobiology
May 2024
Dendritic cells (DCs) are central for the initiation and regulation of appropriate immune responses. While several studies suggest important regulatory roles of sialoglycans in DC biology, our understanding is still inadequate primarily due to a lack of appropriate models. Previous approaches based on enzymatic- or metabolic-glycoengineering and primary cell isolation from genetically modified mice have limitations related to specificity, stability, and species differences.
View Article and Find Full Text PDF