Polymers (Basel)
August 2021
Laser-induced graphene (LIG) has recently been receiving increasing attention due to its simple fabrication and low cost. This study reports a flexible laser-induced graphene-based electrochemical biosensor fabricated on a polymer substrate by the laser direct engraving process. For this purpose, a 450 nm UV laser was employed to produce a laser-induced graphene electrode (LIGE) on a polyimide substrate.
View Article and Find Full Text PDFThis study focuses on preparation and valuation of the biodegradable, native, and modified gelatin film as screen-printing substrates. Modified gelatin film was prepared by crosslinking with various crosslinking agents and the electrode array was designed by screen-printing. It was observed that the swelling ratio of C-2, crosslinked with glutaraldehyde and EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide) was found to be lower (3.
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) is the second most diagnosed cancer often identified during the later stages of carcinogenesis. Orientin, a C-glycoside of luteolin, is well known for its versatile therapeutic action toward oxidative stress-induced cellular response may exert chemoprevention against CRC.
Materials And Methods: In our study, we investigated the modulatory effect of orientin on lipid peroxidation, antioxidant defense, and biotransforming bacterial enzymes in 1, 2-dimethylhydrazine (DMH)-induced male albino Wistar rats in a dose-dependent manner.
In this study, we developed a screen-printed carbon-graphene-based electrochemical biosensor for EN2 protein detection. The engrailed-2 (EN2) protein, a biomarker for prostate cancer, is known to be a strong binder to a specific DNA sequence (5'-TAATTA-3') to regulate transcription. To take advantage of this intrinsic property, aptamer probes with TAATTA sequence was immobilized onto the screen-printed carbon-graphene electrode surface via EDC-NHS coupling approach.
View Article and Find Full Text PDFA urinary microalbumin test is used to detect early signs of kidney damage in people who have a risk of chronic kidney disease, such as those with diabetes or hypertension. In this study, we developed a screen-printed carbon electrode-based immunosensor for the detection of microalbumin in urine. Anti-human albumin antibodies were immobilized on the screen-printed sensor surface by the covalent immobilization method.
View Article and Find Full Text PDF