Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.
View Article and Find Full Text PDFPhys Rev Lett
December 2014
The cores of compact stars reach the highest densities in nature and therefore could consist of novel phases of matter. We demonstrate via a detailed analysis of pulsar evolution that precise pulsar timing data can constrain the star's composition, through unstable global oscillations (r modes) whose damping is determined by microscopic properties of the interior. If not efficiently damped, these modes emit gravitational waves that quickly spin down a millisecond pulsar.
View Article and Find Full Text PDFEur Phys J C Part Fields
October 2014
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction.
View Article and Find Full Text PDFCooper pairing between fermions in dense matter leads to the formation of a gap in the fermionic excitation spectrum and typically exponentially suppresses transport properties. However, we show here that reactions involving conversion between different fermion species, such as Urca reactions in nuclear matter, become strongly enhanced and approach their ungapped level when the matter undergoes density oscillations of sufficiently large amplitude. We study both the neutrino emissivity and the bulk viscosity due to direct Urca processes in hadronic, hyperonic, and quark matter and discuss different superfluid and superconducting pairing patterns.
View Article and Find Full Text PDFBest Pract Res Clin Anaesthesiol
December 2011
The history of ethics in clinical research parallels the history of abuse of human beings. The Nuremberg Code, Declaration of Helsinki, and the Belmont Report laid the foundations for modern research ethics. In the United States, the OHRP and the FDA provide guidelines for the ethical conduct of research.
View Article and Find Full Text PDF