Publications by authors named "K Schweinar"

Single-atom alloys (SAAs) have recently gained considerable attention in the field of heterogeneous catalysis research due to their potential for novel catalytic properties. While SAAs are often examined in reactions of reductive atmospheres, such as hydrogenation reactions, in the present work, we change the focus to AgPd SAAs in oxidative environments since Pd has the highest catalytic activity of all metals for oxidative reactions. Here, we examine how the chemical reactivity of AgPd SAAs differs from its constituent Pd in an oxidative atmosphere.

View Article and Find Full Text PDF

Over the past decade, single-atom alloys (SAAs) have been a lively topic of research due to their potential for achieving novel catalytic properties and circumventing some known limitations of heterogeneous catalysts, such as scaling relationships. In researching SAAs, it is important to recognize experimental evidence of peculiarities in their electronic structure. When an isolated atom is embedded in a matrix of foreign atoms, it exhibits spectroscopic signatures that reflect its surrounding chemical environment.

View Article and Find Full Text PDF

The spatial correlation between defects in crystalline materials and trace element segregation plays a fundamental role in determining the physical and mechanical properties of a material, which is particularly important in naturally deformed materials. Herein, we combine electron backscatter diffraction, electron channelling contrast imaging, scanning transmission electron microscopy and atom probe tomography on a naturally occurring metal sulphide in an attempt to document mechanisms of element segregation in a brittle-dominated deformation regime. Within APT reconstructions, features with a high point density comprising O-rich discs stacked over As-rich spherules are observed.

View Article and Find Full Text PDF

We used atom probe tomography to complement electron microscopy for the investigation of spinodal decomposition in alkali feldspar. To this end, gem-quality alkali feldspar of intermediate composition with a mole fraction of of the K end-member was prepared from Madagascar orthoclase by ion-exchange with (NaK)Cl molten salt. During subsequent annealing at and close to ambient pressure the ion-exchanged orthoclase unmixed producing a coherent lamellar intergrowth of Na-rich and K-rich lamellae.

View Article and Find Full Text PDF

The development of efficient acidic water electrolyzers relies on understanding dynamic changes of the Ir-based catalytic surfaces during the oxygen evolution reaction (OER). Such changes include degradation, oxidation, and amorphization processes, each of which somehow affects the material's catalytic performance and durability. Some mechanisms involve the release of oxygen atoms from the oxide's lattice, the extent of which is determined by the structure of the catalyst.

View Article and Find Full Text PDF