Publications by authors named "K Scholich"

Noxious stimuli activate nociceptive sensory neurons, causing action potential firing and the release of diverse signaling molecules. Several peptides have already been identified to be released by sensory neurons and shown to modulate inflammatory responses and inflammatory pain. However, it is still unclear whether lipid mediators can be released upon sensory neuron activation to modulate intercellular communication.

View Article and Find Full Text PDF

Auto-inflammatory skin diseases place considerable symptomatic and emotional burden on the affected and put pressure on healthcare expenditures. Although most apparent symptoms manifest on the skin, the systemic inflammation merits a deeper analysis beyond the surface. We set out to identify systemic commonalities, as well as differences in the metabolome and lipidome when comparing between diseases and healthy controls.

View Article and Find Full Text PDF

Introduction: During an innate inflammation, immune cells form distinct pro- and anti-inflammatory regions around pathogen-containing core-regions. Mast cells are localized in an anti-inflammatory microenvironment during the resolution of an innate inflammation, suggesting antiinflammatory roles of these cells.

Methods: High-content imaging was used to investigated mast cell-dependent changes in the regional distribution of immune cells during an inflammation, induced by the toll-like receptor (TLR)-2 agonist zymosan.

View Article and Find Full Text PDF

17-β-hydroxysteroid dehydrogenase 13 (HSD17B13), a lipid droplet-associated enzyme, is primarily expressed in the liver and plays an important role in lipid metabolism. Targeted inhibition of enzymatic function is a potential therapeutic strategy for treating steatotic liver disease (SLD). The present study is aimed at investigating the effects of the first selective HSD17B13 inhibitor, BI-3231, in a model of hepatocellular lipotoxicity using human cell lines and primary mouse hepatocytes in vitro.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus (DM) is a leading risk factor for corneal neuropathy and dry eye disease (DED). Another common consequence of DM is diabetic peripheral polyneuropathy (DPN). Both complications affect around 50 % of the DM patients but the relationship between DM, DED and DPN remains unclear.

View Article and Find Full Text PDF