Publications by authors named "K Saunier"

A cross-sectional study on intestinal microbiota composition was performed on 230 healthy subjects at four European locations in France, Germany, Italy, and Sweden. The study participants were assigned to two age groups: 20 to 50 years (mean age, 35 years; n = 85) and >60 years (mean age, 75 years; n = 145). A set of 14 group- and species-specific 16S rRNA-targeted oligonucleotide probes was applied to the analysis of fecal samples by fluorescence in situ hybridization coupled with flow cytometry.

View Article and Find Full Text PDF

Target site inaccessibility represents a significant problem for fluorescent in situ hybridisation (FISH) of 16S rRNA oligonucleotide probes. For this reason, the Clep1156 probe targeting 16S rRNA of the Clostridium leptum phylogenetic subgroup used for dot blot experiments could not be used until now for FISH. Considering that bacteria from the C.

View Article and Find Full Text PDF

Among human faecal bacteria, many members of the Clostridium leptum subgroup are fibrolytic and butyrate producing microorganisms thereby contributing to processes important to colonic health. Yet this phylogenetic subgroup remains poorly described to date. To improve detection and description of members of the C.

View Article and Find Full Text PDF

A nested-PCR temporal temperature gradient gel electrophoresis (TTGE) approach was developed for the detection of bacteria belonging to phylogenetic cluster I of the genus Clostridium (the largest clostridial group, which represents 25% of the currently cultured clostridial species) in cheese suspected of late blowing. Primers were designed based on the 16S rRNA gene sequence, and the specificity was confirmed in PCRs performed with DNAs from cluster I and non-cluster I species as the templates. TTGE profiles of the PCR products, comprising the V5-V6 region of the 16S rRNA gene, allowed us to distinguish the majority of cluster I species.

View Article and Find Full Text PDF

Intensity of the cholesterol-to-coprostanol conversion in the intestine, as assessed by the coprostanol-to-cholesterol ratio in faeces, was found highly variable among 15 human volunteers, ranging from absent to almost complete cholesterol conversion. The number of coprostanoligenic bacteria in the same faecal samples, as estimated by the most probable number method, was found to be less than 10(6) cellsg-1 of fresh stools in the low-to-inefficient converters and at least 10(8) cellsg-1 of fresh stools in the highest converters, indicating that the population level of cultivable faecal coprostanoligenic bacteria correlated with the intensity of cholesterol-to-coprostanol conversion in the human gut. Microbial communities of the samples were profiled by temporal temperature gradient gel electrophoresis (TTGE) of bacterial 16S rRNA gene amplicons.

View Article and Find Full Text PDF