This study introduces an innovative approach to alloy design by experimentally validating the semi-empirical concept of Griessen and Driessen, which predicts the hydrogen affinity of solid solutions. The work focuses on designing and synthesizing four equiatomic high-entropy alloys (HEAs) with compositions tailored to exhibit highly endothermic enthalpies of solution and formation, resulting in resistance to hydrogen absorption. Unlike conventional studies that prioritize hydrogen storage capacity, this research uniquely targets alloys optimized for minimal hydrogen interaction, addressing critical needs in hydrogen storage and transportation technologies prone to hydrogen embrittlement.
View Article and Find Full Text PDFThis study presents the design, preparation, and characterization of thirty new medium-entropy alloys (MEAs) in three systems: Al-Ti-Nb-Zr, Al-Ti-Nb-V, and Al-Ti-Nb-Hf. The hardness of the alloys ranged from 320 to 800 HV. Among the alloys studied, AlTiNbZr exhibited the highest-reversible hydrogen storage capacity (1.
View Article and Find Full Text PDFIn this study, we investigate the effect of small amounts of zirconium alloying the medium-entropy alloy (TiVNb)Cr, a promising material for hydrogen storage. Alloys with 1, 4, and 7 at.% of Zr were prepared by arc melting and found to be multiphase, comprising at least three phases, indicating that Zr addition does not stabilize a single-phase solid solution.
View Article and Find Full Text PDFThis study focuses on the preparation and characterization of zinc-based alloys containing magnesium, calcium, and manganese. The alloys were prepared by the melting of pure elements, casting them into graphite molds, and thermo-mechanically treating them via hot extrusion. The phase compositions of the samples were analyzed using X-ray diffraction technique and SEM/EDX analysis.
View Article and Find Full Text PDFThe Mg-Zn-Ca system has previously been proposed as the most suitable biodegradable candidate for biomedical applications. In this work, a series of ribbon specimens was fabricated using a melt-spinning technique to explore the glass-forming ability of the Mg-Zn-Ca system along the concentration line of 7 at.% of calcium.
View Article and Find Full Text PDF