Publications by authors named "K SAINIO"

Nuclear receptor subfamily 5 group A member 1 (NR5A1) encodes steroidogenic factor 1 (SF1), a key regulatory factor that determines gonadal development and coordinates endocrine functions. Here, we have established a stem cell-based model of human gonadal development and applied it to evaluate the effects of NR5A1 during the transition from bipotential gonad to testicular cells. We combined directed differentiation of human induced pluripotent stem cells (46,XY) with activation of endogenous NR5A1 expression by conditionally-inducible CRISPR activation.

View Article and Find Full Text PDF

Kidney mesenchyme (KM) and nephron progenitors (NPs) depend on WNT activity, and their culture in vitro requires extensive repertoire of recombinant proteins and chemicals. Here we established a robust, simple culture of mouse KM using a combination of 3D Matrigel and growth media supplemented with Fibroblast Growth Factor 2 (FGF2) and Src inhibitor PP2. This allows dissociated KM to spontaneously self-organize into spheres.

View Article and Find Full Text PDF

Mulibrey nanism (MUL) is a rare autosomal recessive multi-organ disorder characterized by severe prenatal-onset growth failure, infertility, cardiopathy, risk for tumors, fatty liver, and type 2 diabetes. MUL is caused by loss-of-function mutations in TRIM37, which encodes an E3 ubiquitin ligase belonging to the tripartite motif (TRIM) protein family and having both peroxisomal and nuclear localization. We describe a congenic Trim37 knock-out mouse (Trim37(-/-)) model for MUL.

View Article and Find Full Text PDF

Background: Foxi3 is a member of the large forkhead box family of transcriptional regulators, which have a wide range of biological activities including manifold developmental processes. Heterozygous mutation in Foxi3 was identified in several hairless dog breeds characterized by sparse fur coat and missing teeth. A related phenotype called hypohidrotic ectodermal dysplasia (HED) is caused by mutations in the ectodysplasin (Eda) pathway genes.

View Article and Find Full Text PDF

Hundreds of different human skeletal disorders have been characterized at molecular level and a growing number of resembling dysplasias with orthologous genetic defects are being reported in dogs. This study describes a novel genetic defect in the Brazilian Terrier breed causing a congenital skeletal dysplasia. Affected puppies presented severe skeletal deformities observable within the first month of life.

View Article and Find Full Text PDF