Publications by authors named "K S Yung"

Macrophages play crucial roles in regulating both homeostatic and inflammatory responses, with classical activated (M1) and alternatively activated (M2) subsets defined by the surrounding micro-environment. Renal fibrosis, developed from persistent inflammation, is worsened by M2 macrophages, yet the precise mechanisms underlying macrophage M2 polarization remain unclear. In this study, we investigated the role of Kv1.

View Article and Find Full Text PDF

The thermocatalytic hydrogenation of CO2 to ethanol has attracted significant interest because ethanol offers ease of transport and substantial value in chemical synthesis. Here, we present a state-of-the-art catalyst for the CO2 hydrogenation to ethanol achieved by precisely depositing single-atom Ir species on P cluster islands situated on the In2O3 nanosheets. The Ir1-Px/In2O3 catalyst achieves an impressive ethanol yield of 3.

View Article and Find Full Text PDF

The patch clamp technique is a fundamental tool for investigating ion channel dynamics and electrophysiological properties. This study proposes the first artificial intelligence framework for characterizing multiple ion channel kinetics of whole-cell recordings. The framework integrates machine learning for anomaly detection and deep learning for multi-class classification.

View Article and Find Full Text PDF

Introduction: Paediatric fractures are common but can be easily missed on radiography leading to potentially serious implications including long-term pain, disability and missed opportunities for safeguarding in cases of inflicted injury. Artificial intelligence (AI) tools to assist fracture detection in adult patients exist, although their efficacy in children is less well known. This study aims to evaluate whether a commercially available AI tool (certified for paediatric use) improves healthcare professionals (HCPs) detection of fractures, and how this may impact patient care in a retrospective simulated study design.

View Article and Find Full Text PDF

Background: 20(S)-Ginsenoside Rh2 (GRh2) has been extensively studied for multifaceted health benefits. However, the anti-melanoma effect of GRh2 remains poorly understood. Herein, the anti-melanoma effects and underlying mechanisms of GRh2 were investigated.

View Article and Find Full Text PDF