Publications by authors named "K S Prashanth"

The synthesis of bioconjugates of curcumin, zingerone, and [6]-shogaol with low molecular weight chitosan (LMWC) is presented. The unconjugated forms of these compounds exhibit low water solubility, poor stability, limited bioavailability, and low target specificity, whereas the synthetic conjugates demonstrate improved physical properties. The synthesis was achieved by forming succinates & then reacting with LMWC.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates multi-drug resistant Acinetobacter baumannii, focusing on rare clinical isolates from India that produce the pigment pyomelanin.
  • Researchers utilized methods like REP-PCR for genotyping and whole genome sequencing to analyze the genomic features of these isolates.
  • Findings reveal that pyomelanin-producing strains are not only multidrug-resistant but also form strong biofilms with specific virulence and resistance genes, indicating advanced adaptability and potential health risks.
View Article and Find Full Text PDF

Dual-phase reinforcing approach provides a novel and efficient strategy for the fabrication of advanced aluminum matrix composites (AMCs). The devisable and desirable performance could be achieved by tuning dual-phase reinforcing system. However, it is still challenging to design a dual-phase reinforcing system with synergistic strengthening effect, especially for the laser powder bed fusion (LPBF) characterized by nonequilibrium metallurgical process.

View Article and Find Full Text PDF

Biomimetic approaches to implant construction are a rising frontier in implantology. Triple Periodic Minimal Surface (TPMS)-based additively manufactured gyroid structures offer a mean curvature of zero, rendering this structure an ideal porous architecture. Previous studies have demonstrated the ability of these structures to effectively mimic the mechanical cues required for optimal implant construction.

View Article and Find Full Text PDF

Background: Microcrystalline cellulose (MCC) is a novel organic material developed by one of the authors in this study. When MCC was incorporated with conventionally available denture base resin, it demonstrated increased flexural strength and flexural modulus. However, it was speculated that because the material is organic, it can promote the growth of .

View Article and Find Full Text PDF