Comprehensive characterization of platelets requires various functional assays and analysis techniques, including omics-disciplines, each requiring an individual aliquot of a given sample. Consequently, the sample material per assay is often highly limited rendering downscaling a prerequisite for effective sample exploitation. Here we present a transfer of our recently introduced 96-well-based proteomics workflow (PF96) into the 384-well format (PF384) allowing for a significant increase in sensitivity when processing minute platelet protein amounts.
View Article and Find Full Text PDFBackground: Spinal cord injury results in permanent neurological impairment and disability due to the absence of spontaneous regeneration. NG101, a recombinant human antibody, neutralises the neurite growth-inhibiting protein Nogo-A, promoting neural repair and motor recovery in animal models of spinal cord injury. We aimed to evaluate the efficacy of intrathecal NG101 on recovery in patients with acute cervical traumatic spinal cord injury.
View Article and Find Full Text PDFProtein inference is an often neglected though crucial step in most proteomic experiments. In the bottom-up proteomic approach, the actual molecules of interest, the proteins, are digested into peptides before measurement on a mass spectrometer. This approach introduces a loss of information: The actual proteins must be inferred based on the identified peptides.
View Article and Find Full Text PDF