Neurons located in the layer II of the entorhinal cortex (ECII) are the primary site of pathological tau accumulation and neurodegeneration at preclinical stages of Alzheimer's disease (AD). Exploring the alterations that underlie the early degeneration of these cells is essential to develop therapies that delay disease onset. Here we performed cell-type specific profiling of the EC at the onset of human AD neuropathology.
View Article and Find Full Text PDFInherited retinal degeneration (IRD) is a heterogeneous group of genetic disorders of variable onset and severity, with vision loss being a common endpoint in most cases. More than 50 distinct IRD phenotypes and over 280 causative genes have been described. Establishing a clinical phenotype for patients with IRD is particularly challenging due to clinical variability even among patients with similar genotypes.
View Article and Find Full Text PDFBackground: Cesarean hysterectomy for placenta accreta spectrum disorder may be associated with severe hemorrhage because of placental invasion of the myometrium and the uterovesical space or parametrium. It leads to serious complications, such as massive hemorrhage requiring massive transfusion, coagulopathy, bladder and ureteric injuries, need for intensive care unit admission and prolonged hospital stay. To reduce the complications of cesarean hysterectomy for placenta accreta spectrum disorder, ongoing efforts are being made to develop different surgical approaches.
View Article and Find Full Text PDFV-ATPases are ubiquitous and evolutionarily conserved rotatory proton pumps, which are crucial for maintaining various biological functions. Previous investigations have shown that a V-ATPase is present in the support cells of moth trichoid sensilla and influences their olfactory sensory neuron performance. Generally, V-ATPases are thought to regulate the pH value within the sensillum lymph, and aid K homeostasis within the sensillum.
View Article and Find Full Text PDFTransmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood.
View Article and Find Full Text PDF