Publications by authors named "K Roosa"

Simple dynamic modeling tools can help generate real-time short-term forecasts with quantified uncertainty of the trajectory of diverse growth processes unfolding in nature and society, including disease outbreaks. An easy-to-use and flexible toolbox for this purpose is lacking. This tutorial-based primer introduces and illustrates GrowthPredict, a user-friendly MATLAB toolbox for fitting and forecasting time-series trajectories using phenomenological dynamic growth models based on ordinary differential equations.

View Article and Find Full Text PDF

Background: Simple dynamic modeling tools can be useful for generating real-time short-term forecasts with quantified uncertainty of the trajectory of diverse growth processes unfolding in nature and society, including disease outbreaks. An easy-to-use and flexible toolbox for this purpose is lacking.

Results: In this tutorial-based primer, we introduce and illustrate a user-friendly MATLAB toolbox for fitting and forecasting time-series trajectories using phenomenological dynamic growth models based on ordinary differential equations.

View Article and Find Full Text PDF

Background: As climate variability and extreme weather events associated with climate change become more prevalent, public health authorities can expect to face an expanding spectrum of vector-borne diseases with increasing incidence and geographical spread. Common interventions include the use of larvicides and adulticides, as well as targeted communications to increase public awareness regarding the need for personal protective measures, such as mosquito repellant, protective clothing, and mosquito nets. Here, we propose a simplified compartmental model of mosquito-borne disease dynamics that incorporates the use of personal protection against mosquito bites influenced by two key individual-level behavioral drivers-concern for being bitten by mosquitos as a nuisance and concern for mosquito-borne disease transmission.

View Article and Find Full Text PDF

We analyze an ensemble of n-sub-epidemic modeling for forecasting the trajectory of epidemics and pandemics. These ensemble modeling approaches, and models that integrate sub-epidemics to capture complex temporal dynamics, have demonstrated powerful forecasting capability. This modeling framework can characterize complex epidemic patterns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple peaks of different sizes.

View Article and Find Full Text PDF

Unlabelled: We analyze an ensemble of -sub-epidemic modeling for forecasting the trajectory of epidemics and pandemics. These ensemble modeling approaches, and models that integrate sub-epidemics to capture complex temporal dynamics, have demonstrated powerful forecasting capability. This modeling framework can characterize complex epidemic patterns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple peaks of different sizes.

View Article and Find Full Text PDF