The use of high-frequency water quality monitoring has increased over several decades. This has mostly been motivated by curiosity-driven research and has significantly improved our understanding of hydrochemical processes. Despite these scientific successes and the growth in sensor technology, the large-scale uptake of high-frequency water quality monitoring by water managers is hampered by a lack of comprehensive practical guidelines.
View Article and Find Full Text PDFAssessing nutrient loading and processing is crucial for water quality management in lakes and reservoirs. Quantifying and reducing external nutrient inputs in these systems remains a significant challenge. The difficulty arises from low monitoring frequencies of the highly dynamic external inputs and the limited availability of measures to reduce diffuse source loading.
View Article and Find Full Text PDFWater-level reduction frequently occurs in deep reservoirs, but its effect on dissolved oxygen concentration is not well understood. In this study we used a well-established water quality model to illustrate effects of water level dynamics on oxygen concentration in Rappbode Reservoir, Germany. We then systematically elucidated the potential of selective withdrawal to control hypoxia under changing water levels.
View Article and Find Full Text PDF