Publications by authors named "K Renziehausen"

We compare the calculation of time-dependent quantum expectation values performed in different ways. In one case, they are obtained from an integral over a function of the probability density, and in the other case, the integral is over a function of the probability flux density. The two kinds of coordinate-dependent integrands are very different in their appearance, but integration yields identical results, if the exact wave function enters into the computation.

View Article and Find Full Text PDF

Based on the Ehrenfest theorem, the time-dependent expectation value of a momentum operator can be evaluated equivalently in two ways. The integrals appearing in the expressions are taken over two different functions. In one case, the integrand is the quantum mechanical flux density j̲, and in the other, a different quantity j̲̃ appears, which also has the units of a flux density.

View Article and Find Full Text PDF

We theoretically investigate the deformation of atomic p_{±} orbitals driven by strong elliptically polarized (EP) laser fields and the role it plays in tunnel ionization. Our study reveals that different Stark effects induced by orthogonal components of the EP field give rise to subcycle rearrangement of the bound electron density, rendering the initial p_{+} and p_{-} orbitals deformed and polarized along distinctively tilted angles with respect to the polarization ellipse of the EP field. As a consequence, the instantaneous tunneling rates change such that for few-cycle EP laser pulses the bound electron initially counterrotating (corotating) with the electric field is most likely released before (after) the peak of the electric field.

View Article and Find Full Text PDF

Absorption line-shapes of molecular aggregates are often calculated using a simple form for a vibronic Hamiltonian. Parameters which enter into the model are usually taken from measured spectra. Here, we address the question in how far different sets of input parameters used to calculate the spectra lead to similar spectral features.

View Article and Find Full Text PDF

Although the absolute or carrier envelope phase (CEP) of a laser pulse is usually assumed to be effective for ultrashort and/or ultrastrong pulses only, it is demonstrated that these limitations can eventually be removed. Therefore, the excitation of a model positively charged homonuclear diatomic molecule, in which four electronic states are coupled by the laser field, is studied. In an initial step, nuclear wave packets in two dissociative states are prepared.

View Article and Find Full Text PDF