Background: There is wide acknowledgement in the literature that social connection is protective against loneliness and depression. More robust research, however, is needed to evaluate interventions that promote social connection. This protocol paper outlines the evaluation of a community-wide social connection program, , in metropolitan Melbourne, Australia to support people 65 years and older to increase access to local community services/activities; and to ascertain impact on social connection, loneliness, depressive symptoms, physical and mental wellbeing, and use of health services.
View Article and Find Full Text PDFObjective: To further develop and refine an Emergency Department (ED) in-patient admission prediction model using machine learning techniques.
Methods: This was a retrospective analysis of state-wide ED data from New South Wales, Australia. Six classification algorithms (Bayesian networks, decision trees, logistic regression, naïve Bayes, neural networks and nearest neighbour) and five feature selection techniques (none, manual, correlation-based, information gain and wrapper) were examined.