This manuscript presents a comprehensive study on the quantification of modifier molecules adsorbed on gold nanoparticles (AuNPs) using two complementary techniques Ellman's method (UV-vis spectroscopy) and isothermal titration calorimetry (ITC). In this paper, we compare the feasibility of using the ITC technique and Ellman's method to study the interactions of mercaptosulfonate compounds (sodium mercaptoethanesulfonate, MES, and sodium mercaptoundecanesulfonate, MUS) with the surface of AuNPs of various sizes. The thermodynamic functions of the attachment of mercaptosulfonates to AuNPs were determined, revealing a linear relationship between the number of adsorbed molecules and the surface area of the nanoparticles.
View Article and Find Full Text PDFIn this study, molybdenum(IV) sulfide (MoS ) nanoparticles (97 ± 32 nm) and microparticles (1.92 ± 0.64 μm) stabilized with poly (vinylpolypyrrolidone) (PVP) were administered intratracheally to male and female rats (dose of 1.
View Article and Find Full Text PDF(1) Background: Epigallocatechin gallate (EGCG) has been recognized as a flavonoid showing antiviral activity against various types of DNA and RNA viruses. In this work, we tested if EGCG-modified silver nanoparticles (EGCG-AgNPs) can become novel microbicides with additional adjuvant properties to treat herpes infections. (2) Methods: The anti-HSV and cytotoxic activities of EGCG-AgNPs were tested in human HaCaT and VK-2-E6/E7 keratinocytes.
View Article and Find Full Text PDFThe described research aimed to develop the properties of the conductive composite /poly(3,4-ethylenedioxy-thiophene-poly(4-lithium styrenesulfonic acid)/chitosan-AuNPs-glutaraldehyde/ (/PEDOT-PSSLi/chit-AuNPs-GA/) and to develop an electrochemical enzyme sensor based on this composite material and glassy carbon electrodes (GCEs). The composite was created via electrochemical production of an /EDOT-PSSLi/ layer on a glassy carbon electrode (GCE). This layer was covered with a glutaraldehyde cross-linked chitosan and doped with AuNPs.
View Article and Find Full Text PDFNeuroinfections caused by herpesviruses, mainly by HHV-1, represent a significant problem for modern medicine due to the small number of therapeutic substances available in the pharmaceutical sector. Furthermore, HHV-1 infection has been linked to neurodegenerative processes such as Alzheimer's disease, which justifies the search for new effective therapies. The development of nanotechnology opens up new possibilities for the treatment of neuroinflammation.
View Article and Find Full Text PDF