Publications by authors named "K Rajarathnam"

CXCL17, a novel member of the CXC chemokine class, has been implicated in several human pathologies, but its role in mediating immune response is not well understood. Characteristic features of immune response include resident macrophages orchestrating successive and structured recruitment of neutrophils and monocytes to the insult site. Here, we show that Cxcl17 knockout (KO) mice, compared with the littermate wild-type control mice, were significantly impaired in peritoneal neutrophil recruitment post-lipopolysaccharide (LPS) challenge.

View Article and Find Full Text PDF

The chemokine Cxcl1 plays a crucial role in recruiting neutrophils in response to infection. The early events in chemokine-mediated neutrophil extravasation involve a sequence of highly orchestrated steps including rolling, adhesion, arrest, and diapedesis. Cxcl1 function is determined by its properties of reversible monomer-dimer equilibrium and binding to Cxcr2 and glycosaminoglycans.

View Article and Find Full Text PDF

Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers.

View Article and Find Full Text PDF

Microbial infection is characterized by release of multiple proinflammatory chemokines that direct neutrophils to the insult site. How collective function of these chemokines orchestrates neutrophil recruitment is not known. Here, we characterized the role for heterodimer and show that the Cxcl1-Cxcl2 heterodimer is a potent neutrophil chemoattractant in mice and can recruit more neutrophils than the individual chemokines.

View Article and Find Full Text PDF

Chemokine CXCL8 is a key facilitator of the human host immune response, mediating neutrophil migration, and activation at the site of infection and injury. The oxidative burst is an important effector mechanism which leads to the generation of reactive nitrogen species (RNS), including peroxynitrite. The current study was performed to determine the potential for nitration to alter the biological properties of CXCL8 and its detection in human disease.

View Article and Find Full Text PDF