Accurate simulation of electronic excited states of large chromophores is often difficult due to the computationally expensive nature of existing methods. Common approximations such as fragmentation methods that are routinely applied to ground-state calculations of large molecules are not easily applicable to excited states due to the delocalized nature of electronic excitations in most practical chromophores. Thus, special techniques specific to excited states are needed.
View Article and Find Full Text PDFWe present a generalization of the connectivity-based hierarchy (CBH) of isodesmic-based correction schemes to a multilayered fragmentation platform for overall cost reduction while retaining high accuracy. The newly developed multilayered CBH approach, called stepping-stone CBH (SSCBH), is benchmarked on a diverse set of 959 medium-sized organic molecules. Applying SSCBH corrections to the PBEh-D3 density functional resulted in an average error of 0.
View Article and Find Full Text PDFThe complexity and size of large molecular systems, such as protein-ligand complexes, pose computational challenges for accurate post-Hartree-Fock calculations. This study delivers a thorough benchmarking of the Molecules-in-Molecules (MIM) method, presenting a clear and accessible strategy for layer/theory selections in post-Hartree-Fock computations on substantial molecular systems, notably protein-ligand complexes. An approach is articulated, enabling augmented computational efficiency by strategically canceling out common subsystem energy terms between complexes and proteins within the supermolecular equation.
View Article and Find Full Text PDFAromatic foldamers make up a novel class of bioinspired molecules that display helical conformations and have functions that rely on control over their coil-helix folding preferences. While the folding has been extensively examined by experiment, it has rarely been paired with the types of atomic level insights offered by theory. We present the results of all-atom molecular dynamics (MD) simulations to examine the role of solvent polarity on driving the helical folding behavior of the aryl-triazole foldamer.
View Article and Find Full Text PDF