Optical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.
View Article and Find Full Text PDFBackground: Genome Mapping Technologies (optical and electronic) use ultra-high molecular weight DNA to detect structural variation and have application in constitutional genetic disorders, hematological neoplasms, and solid tumors. Genome mapping can detect balanced and unbalanced structural variation, copy number changes, and haplotypes. The technique is analogous to chromosomal microarray analysis, although genome mapping has the added benefit of being able to detect and ascertain the nature of more abnormalities in a single assay than array, karyotyping, or FISH alone.
View Article and Find Full Text PDFBackground: Despite the vaccination process in Germany, a large share of the population is still susceptible to SARS-CoV-2. In addition, we face the spread of novel variants. Until we overcome the pandemic, reasonable mitigation and opening strategies are crucial to balance public health and economic interests.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In-Situ Hybridization (FISH) together with Multiple Ligation-dependent Probe Amplification (MLPA), array and PCR-based methods form the backbone of routine diagnostics. This approach is labor-intensive, time-consuming and costly.
View Article and Find Full Text PDFNon-pharmaceutical interventions (NPIs) are important to mitigate the spread of infectious diseases as long as no vaccination or outstanding medical treatments are available. We assess the effectiveness of the sets of non-pharmaceutical interventions that were in place during the course of the Coronavirus disease 2019 (Covid-19) pandemic in Germany. Our results are based on hybrid models, combining SIR-type models on local scales with spatial resolution.
View Article and Find Full Text PDF