Monolayers containing subnanometer striations of silica and hafnia to form composite materials at varying ratios are explored as a method to develop high-index dielectric layers with increased laser-induced-damage thresholds (LIDTs). These layers can then be used in multilayer dielectric coatings for short-pulse, high-peak-power laser applications, particularly in regions of the highest electric-field intensity. Fabrication is achieved by means of exposure to two different evaporant vapor plumes, where local exposure to each plume is controlled via shielding to prevent simultaneous exposure.
View Article and Find Full Text PDFPotassium dihydrogen phosphate (KDP) and its deuterated analog (DKDP) are unique nonlinear optical materials for high power laser systems. They are used widely for frequency conversion and polarization control by virtue of the ability to grow optical-quality crystals at apertures suitable for fusion-class laser systems. Existing methods for freeform figuring of KDP/DKDP optics do not produce surfaces with sufficient laser-induced-damage thresholds (LIDT's) for operation in the ultraviolet portion of high-peak-power laser systems.
View Article and Find Full Text PDFWe used COMSOL Multiphysics to design a prototype actively cooled "flow-cell" substrate targeted at high-average-power applications, fabricated the prototype from cordierite ceramic, and tested the substrate under load in our thermal loading test stand. Sub-aperture testing revealed average-power handling up to 3.88-W/cm absorbed power density, in excellent agreement with model predictions.
View Article and Find Full Text PDFInteractions of liquid crystals (LC's) with polarized light have been studied widely and have spawned numerous device applications, including the fabrication of optical elements for high-power and large-aperture laser systems. Currently, little is known about both the effect of incident polarization state on laser-induced-damage threshold (LIDT) and laser-induced functional threshold (LIFT) behavior at sub-LIDT fluences under multipulse irradiation conditions. This work reports on the first study of the nanosecond-pulsed LIDT's dependence on incident polarization for several optical devices employing oriented nematic and chiral-nematic LC's oriented by surface alignment layers.
View Article and Find Full Text PDF